384 research outputs found

    Pathogenic Hantaviruses Elicit Different Immunoreactions in THP-1 Cells and Primary Monocytes and Induce Differentiation of Human Monocytes to Dendritic-Like Cells

    Get PDF
    Hantaviruses cause two important human illnesses, hemorrhagic fever with renal syndrome (HFRS) and hantavirus pulmonary syndrome (HPS). Both syndromes are believed to be immune-mediated diseases. Monocytes/macrophages are thought to be the main target cells for hantaviruses and important sources of and targets for cytokines/chemokines secretion. THP-1 cells have been used extensively as models for primary monocytes in biocompatibility research. The aim of our study was to determine if hantaviruses induce the same immunoreactions in THP-1 cells and primary monocytes/ macrophages and might therefore be suitable for immune studies of hantaviral infections. For that purpose we compared various cytokines/chemokines and their receptors in THP-1 cell line and primary monocytes/macrophages. Infected primary monocytes/macrophages induced mostly -chemokines and their receptors. In contrast, THP-1 cells, expressed receptors for CXC chemokines. Surprisingly, infected macrophages underwent morphological changes toward dendriticlike cells and increased expression of co-stimulatory molecules: CD40, CD80, CD83 and CD86. Our data indicate that THP-1 cells are not ideal for in vitro research of the immunopathogenesis of hantaviruses in humans. Further, our studies revealed potential roles for cytokines/chemokines in HFRS/HPS immunopathogenesis and point to intriguing possibilities for the possible differentiation of infected macrophages to dendritic-like cells

    Ultrastructural study of Rift Valley fever virus in the mouse model

    Get PDF
    AbstractDetailed ultrastructural studies of Rift Valley fever virus (RVFV) in the mouse model are needed to develop and characterize a small animal model of RVF for the evaluation of potential vaccines and therapeutics. In this study, the ultrastructural features of RVFV infection in the mouse model were analyzed. The main changes in the liver included the presence of viral particles in hepatocytes and hepatic stem cells accompanied by hepatocyte apoptosis. However, viral particles were observed rarely in the liver; in contrast, particles were extremely abundant in the CNS. Despite extensive lymphocytolysis, direct evidence of viral replication was not observed in the lymphoid tissue. These results correlate with the acute-onset hepatitis and delayed-onset encephalitis that are dominant features of severe human RVF, but suggest that host immune-mediated mechanisms contribute significantly to pathology. The results of this study expand our knowledge of RVFV–host interactions and further characterize the mouse model of RVF

    Postexposure Treatment of Marburg Virus Infection

    Get PDF
    Rhesus monkeys are protected from disease when a recombinant vesicular stomatitis virus–based vaccine is administered 20–30 min after infection with Marburg virus. We protected 5/6 monkeys when this vaccine was given 24 h after challenge; 2/6 animals were protected when the vaccine was administered 48 h postinfection

    Pathogenesis of lassa fever in cynomolgus macaques

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Lassa virus (LASV) infection causes an acute and sometimes fatal hemorrhagic disease in humans and nonhuman primates; however, little is known about the development of Lassa fever. Here, we performed a pilot study to begin to understand the progression of LASV infection in nonhuman primates.</p> <p>Methods</p> <p>Six cynomolgus monkeys were experimentally infected with LASV. Tissues from three animals were examined at an early- to mid-stage of disease and compared with tissues from three animals collected at terminal stages of disease.</p> <p>Results</p> <p>Dendritic cells were identified as a prominent target of LASV infection in a variety of tissues in all animals at day 7 while Kupffer cells, hepatocytes, adrenal cortical cells, and endothelial cells were more frequently infected with LASV in tissues of terminal animals (days 13.5-17). Meningoencephalitis and neuronal necrosis were noteworthy findings in terminal animals. Evidence of coagulopathy was noted; however, the degree of fibrin deposition in tissues was less prominent than has been reported in other viral hemorrhagic fevers.</p> <p>Conclusion</p> <p>The sequence of pathogenic events identified in this study begins to shed light on the development of disease processes during Lassa fever and also may provide new targets for rational prophylactic and chemotherapeutic interventions.</p

    Pathogenic Hantaviruses Elicit Different Immunoreactions in THP-1 Cells and Primary Monocytes and Induce Differentiation of Human Monocytes to Dendritic-Like Cells

    Get PDF
    Hantaviruses cause two important human illnesses, hemorrhagic fever with renal syndrome (HFRS) and hantavirus pulmonary syndrome (HPS). Both syndromes are believed to be immune-mediated diseases. Monocytes/macrophages are thought to be the main target cells for hantaviruses and important sources of and targets for cytokines/chemokines secretion. THP-1 cells have been used extensively as models for primary monocytes in biocompatibility research. The aim of our study was to determine if hantaviruses induce the same immunoreactions in THP-1 cells and primary monocytes/ macrophages and might therefore be suitable for immune studies of hantaviral infections. For that purpose we compared various cytokines/chemokines and their receptors in THP-1 cell line and primary monocytes/macrophages. Infected primary monocytes/macrophages induced mostly -chemokines and their receptors. In contrast, THP-1 cells, expressed receptors for CXC chemokines. Surprisingly, infected macrophages underwent morphological changes toward dendriticlike cells and increased expression of co-stimulatory molecules: CD40, CD80, CD83 and CD86. Our data indicate that THP-1 cells are not ideal for in vitro research of the immunopathogenesis of hantaviruses in humans. Further, our studies revealed potential roles for cytokines/chemokines in HFRS/HPS immunopathogenesis and point to intriguing possibilities for the possible differentiation of infected macrophages to dendritic-like cells

    Effective Post-Exposure Treatment of Ebola Infection

    Get PDF
    Ebola viruses are highly lethal human pathogens that have received considerable attention in recent years due to an increasing re-emergence in Central Africa and a potential for use as a biological weapon. There is no vaccine or treatment licensed for human use. In the past, however, important advances have been made in developing preventive vaccines that are protective in animal models. In this regard, we showed that a single injection of a live-attenuated recombinant vesicular stomatitis virus vector expressing the Ebola virus glycoprotein completely protected rodents and nonhuman primates from lethal Ebola challenge. In contrast, progress in developing therapeutic interventions against Ebola virus infections has been much slower and there is clearly an urgent need to develop effective post-exposure strategies to respond to future outbreaks and acts of bioterrorism, as well as to treat laboratory exposures. Here we tested the efficacy of the vesicular stomatitis virus-based Ebola vaccine vector in post-exposure treatment in three relevant animal models. In the guinea pig and mouse models it was possible to protect 50% and 100% of the animals, respectively, following treatment as late as 24 h after lethal challenge. More important, four out of eight rhesus macaques were protected if treated 20 to 30 min following an otherwise uniformly lethal infection. Currently, this approach provides the most effective post-exposure treatment strategy for Ebola infections and is particularly suited for use in accidentally exposed individuals and in the control of secondary transmission during naturally occurring outbreaks or deliberate release

    Reverse genetics with a full-length infectious cDNA of severe acute respiratory syndrome coronavirus

    Get PDF
    A previously undescribed coronavirus (CoV) is the etiologic agent responsible for severe acute respiratory syndrome (SARS). Using a panel of contiguous cDNAs that span the entire genome, we have assembled a full-length cDNA of the SARS-CoV Urbani strain, and have rescued molecularly cloned SARS viruses (infectious clone SARS-CoV) that contained the expected marker mutations inserted into the component clones. Recombinant viruses replicated as efficiently as WT virus and both were inhibited by treatment with the cysteine proteinase inhibitor (2S,3S)-transepoxysuccinyl-l-leucylamido-3-methylbutane ethyl ester. In addition, subgenomic transcripts were initiated from the consensus sequence ACGAAC in both the WT and infectious clone SARS-CoV. Availability of a SARS-CoV full-length cDNA provides a template for manipulation of the viral genome, allowing for the rapid and rational development and testing of candidate vaccines and therapeutics against this important human pathogen

    Interferon-β 1a and SARS Coronavirus Replication

    Get PDF
    A global outbreak of severe acute respiratory syndrome (SARS) caused by a novel coronavirus began in March 2003. The rapid emergence of SARS and the substantial illness and death it caused have made it a critical public health issue. Because no effective treatments are available, an intensive effort is under way to identify and test promising antiviral drugs. Here, we report that recombinant human interferon (IFN)-β 1a potently inhibits SARS coronavirus replication in vitro
    corecore